引用格式:叶杰,孟凡晓,白潍铭,等."四同"条件下周口城区高分一号遥感影像分类对比研究[J].地球信息科学学报,2020,22(10):2088-2097. [Ye J, Meng F X, Bai W M, et al. A comparative study on the classification of GF-1 remote sensing images for Zhoukou urban under the four identical condition[J]. Journal of Geo-information Science, 2020,22(10):2088-2097.] DOI:10.12082/dqxxkx.2020.190483

"四同"条件下周口城区高分一号遥感影像分类 对比研究

叶杰1,孟凡晓1*,白潍铭1,张斌1,郑金明2

1. 河南省航空物探遥感中心,郑州 450053; 2. 西北核技术研究所,西安 710024

A Comparative Study on the Classification of GF-1 Remote Sensing Images for Zhoukou Urban under the Four Identical Condition

YE Jie¹, MENG Fanxiao^{1*}, BAI Weiming¹, ZHANG Bin¹, ZHENG Jinming²

1. Henan Aero Geophysical Survey and Remote Sensing Center, Zhengzhou 450053, China;

2. Northwest Institute of Nuclear Technology, Xi'an 710024, China

Abstract: At present, due to different classification methods, softwares, and samples used for classification which could introduce various systematic errors, the majority of studies for comparing the advantages and disadvantages of pixel-based and object-based classification are unprecise to a certain degree. To make a better comparison between the pixel-based and object-based approaches, pixel-based and object-based classification methods were adopted to classify the fused image of panchromatic and multispectral images provided by GF-1 satellite in the main urban district of Zhoukou on April 17, 2018, using the same hardware and software environments, classifier, training samples, and verification samples, namely *four identical conditions*. Subjective and objective evaluations of the pixel-based and object-based classification and Regression Tree (CART), Support Vector Machine (SVM), and Random Forest (RF) were used as the classifiers in the pixel-based and object-based classification procedure. Results show that (1) both pixel-based and object-based approaches could recognize the main urban targets, which was consistent with previous research results. However, the object-based method had a better overall accuracy (78.02%) and the Kappa coefficient (0.72); for object-

收稿日期:2019-09-02;修回日期:2019-10-28.

基金项目:全国矿山环境恢复治理状况遥感地质调查与监测(DD20190705);河南省航空物探遥感中心自主科研项目(2018-05);2018 年度省财政厅地质科研项目(豫国土资发[2018]98 号)。[Foundation items: National Remote Sensing Geological Survey and Monitoring for Mine Environmental Restoration and Control in China, No.DD20190705; Independent Scientific Research Project of Henan Aero Geophysical Survey and Remote Sensing Center Research on Multi-Element Remote Sensing Information Extraction Technology of Urban Geological Environment in 2018, No.2018-05; Henan Provincial Department of Finance Geological Research Project in 2018, No.Department of Land and Resources of Henan Province [2018]98.]

作者简介:叶杰(1979—),男,河南驻马店人,高级工程师,主要从事遥感技术研究与应用。E-mail: 21807621@qq.com *通讯作者:孟凡晓(1990—),女,内蒙古赤峰人,硕士生,主要从事遥感技术研究与应用。E-mail: mengfx1030@163.com

based image classification, RF also achieved the highest overall accuracy (93.40%) and the Kappa coefficient (0.92), which demonstrated that RF was the best machine learning algorithm for classifying Zhoukou urban targets; (2) due to similar spectral signature and cross-distribution, the Producer's Accuracy (PA) and User's Accuracy (UA) of building land, and traffic land were lower. However, the object-based classification produced much higher PA and UA than pixel-based classification in classifying building land and transportation land. Taking RF as example, the PA of building land increased from 56.18% to 92.13%, with the UA increasing from 69.44% to 87.23%, and the PA of traffic land increased from 72.15% to 89.87%, with the UA increasing from 72.15% to 92.20%; (3) compared with previous related researches, this paper conducts a more scientific and rigorous evaluation for pixel-based and object-based classification methods under the *four identical conditions*, which provides valuable references to classify urban targets using high resolution satellite remote sensing images in the future.

Key words: the four identical condition; pixel-based; object-based; GF-1; machine learning; comparison analysis; each category; overall accuracy

*Corresponding author: MENG Fanxiao, E-mail: mengfx1030@163.com

摘要:目前大多数面向像元、面向对象遥感影像分类对比研究算法、软件、样本均不同,引入多方面系统误差导致结果一定程度上不严谨。为更准确比较2种分类方法,本文采用面向像元、面向对象2种分类方式,在同软件平台、同分类器、同训练样本、同验证样本,即"四同"条件下对2018年4月17日高分一号周口城区融合影像进行分类对比研究,并完成主、客观评价精度评价。结果表明:①"四同"条件下2种分类方式、CART(Classification and Regression Tree)、SVM(Support Vector Machine)、RF(Random Forests)3种机器学习算法均能识别周口城区主要地物类型,而面向对象的分类效果明显优于面向像元分类,与前人研究结论一致。其中面向像元分类效果最好的是RF算法,总体分类精度为93.40%,Kappa系数为0.92;②尽管由于光谱特征相似、分布交叉,单类别建筑用地、交通用地用户精度与生产者精度较低,但面向对象分类较面向像元分类效果明显提升,以RF分类为例,建筑用地生产者精度由56.18%提高至92.13%,用户精度由69.44%提高至87.23%;交通用地生产者精度由72.15%提高至89.20%;③与前人研究成果比较,本文在"四同"条件下实现了更科学、更严谨的面向像元、面向对象遥感分类方法对比,对后续高分辨率遥感影像分类具有一定参考意义。

关键词:"四同"条件;面向像元;面向对象;高分一号;机器学习;对比分析;单类别;总体精度

1 引言

随着卫星遥感技术发展,越来越多的高分辨率 遥感卫星成功发射,为人们科研生产提供丰富的基 础数据资料。然而,面对日益丰富的高分辨率卫星 遥感数据,如何实现影像信息快速、准确提取是高 分辨卫星遥感应用的重要问题。

遥感影像分类是遥感应用的重要内容。遥感 影像分类按发展分为人工目视解译、计算机自动分 类2个阶段。人工目视解译精度高,但效率低、对主 观知识依赖强,不适合大面积影像分类。计算机自 动分类精度普遍不如人工目视解译,但其处理效率 高,受主观因素影响小、普适性强,是目前遥感分类 主流方式。计算机自动分类按照处理单元不同分 为面向像元、面向对象2类。面向像元分类处理基 本单位为单个像元^[1],国内外学者采用面向像元分 类方法进行大量实验并取得了较好的分类效果^[24]。 然而,面向像元分类虽然处理效率快,但具有"椒 盐"现象严重、后期处理复杂等缺点,尤其对于高分 辨影像处理效率低、分类效果差。面向对象分类处 理单元是具有相似光谱或空间特征的影像对象^[5], 它利用光谱信息、纹理和上下文关系等信息对影像 分类。大量研究表明面向对象分类是一种效率较 高、精度较高的分类方式^[67]。

国内外针对面向像元与面向对象分类已开展 大量对比研究^[8-14],如Hadi等^[8]以Terre-5卫星影像为 基础,分别采用最大似然分类器、K近邻面向对象 分类器对巴生河流域热带景观进行面向像元与面 向对象的分类对比研究,结果表明K近邻面向对象 分类的误差率比最大似然分类的误差率低250%,K 近邻面向对象分类性能比最大似然分类法有很大 提高。Piazza等^[9]以机载高空间分辨率为数据源, 对巴西南部的圣卡塔琳娜州次生常绿雨林覆盖研 究区进行面向像元与面向对象的分类对比研究,面 向像元采用ENVI监督分类最大似然法和非监督分 类K-means法,面向像元采用eCognition监督决策 树法,结果表明面向像元分类单类别分类精度在 62%到63%,而面向对象分类单类别精度提升至 89%到91%,与面向像元分类方法相比,本研究采用 的面向对象的分类方法取得了令人满意的准确率, 总体准确率提高了 40%。 2018 年 Wang 等^[13]以 Pléiades-1为数据源,采用机器学习DT、SVM、RF分 类器,分别在IDL、eCognition环境下,对中国广州 南沙湿地公园人工红树林树种进行面向像元、面向 对象分类,结果表明面向像元、面向对象2种分类方 式都可以识别主要人工红树林树种,但总体上面向 对象方法具有更好的性能;面向像元SVM算法的 总体分类准确率最高,为79.63%,面向对象RF算法 总体分类准确率最高,为82.40%。

通过总结前人研究发现:对于同一影像,面向 对象分类效果总体优于面向像元分类效果。然而 不难发现,二者对比分析时采用的算法、软件样本 均不同,这就引入了多方面系统误差从而导致验 证结果不严谨,可信度低。为了更准确比较2种分 类方式,更好理解面向像元、面向对象2种解译思 想,本文以国产高分一号2m融合影像为遥感数据 源,以河南周口城区为研究区,设计一套"四同"条 件下的面向像元、面向对象的分类对比实验,即在 eCognition软件平台、同一套训练样本、3种机器学 习(分别为CART、SVM、RF)算法、同一套验证样 本条件下进行2种分类,并基于混淆矩阵完成精度 评价与分析。

2 研究区概况与数据来源

2.1 研究区概况

研究区位于河南省周口城区及附近(图1),地处 114°36.33′E—114°43.3′E,33°35.00′N—33°40.00′N, 总面积约100 km²。研究区地处中纬度地带,属于 亚热带季风气候和暖温带季风型气候混合气候,地 属黄淮平原,地势西北高东南低,属淮河流域,主要 有颍河、洪河两大水系。

2.2 数据来源与预处理

本文遥感数据采用国产高分一号数据,来源于中国资源卫星研究中心(http://www.cresda.com/

图 1 2018年4月17日周口城区GF-1融合影像 Fig 1 Fusion remote sensing image of GF-1 satellite for the main districts of Zhoukou acquired on April 17, 2018

CN/),具体参数如表1所示。本文选择成像日期为2018年4月17日2m全色、8m多光谱波段,基于ENVI、ArcGIS完成数据预处理,得到配准误差在0.5个像元内、空间分辨率为2m高分一号融合影像。

表1 高分一号卫星遥感数据参数 Tab.1 The parameters of GF-1 satellite image

-
▶辨率 □谱
0.52
0.59
0.69
0.89
5
相机)
0.52 0.59 0.69 0.89 5 相札

3 研究方法

3.1 分类体系建立

结合研究区特点及资料¹¹³发现:由于研究区所 处位置及其城市土地覆盖类型不同不能直接使用 已有分类体系,需根据实际情况进行修改。因此, 结合周口城区地物影像特征、空间分布建立本文分 类体系,分为建筑用地、水体湿地、交通用地、农业 用地、林草地5大类。

3.2 面向像元分类方法

面向像元分类根据是否需要分类人员事先提

供已知类别或定义训练样本,将遥感影像分类分为 非监督分类、监督分2种方式¹⁶⁶。本文面向像元分 类采用监督分类。由于 eCognition 是针对面向对象 分类的专门软件,因此首要解决的问题是如何进行 像元级分割。本次实验采用棋盘分割,分割尺度与 像元大小一致实现像元级分割;然后基于训练样 本,选择蓝、绿、红、近红外4个光谱特征,在 eCognition 中采用 CART、SVM、RF 3 种机器学习分类器完 成面向像元城市用地遥感分类,并基于验证样本对 分类结果进行主、客观精度评价。

3.3 面向对象分类方法

本文面向对象的分类方法流程依次为影像分割、最优特征集确定、机器学习分类、精度评价,具体如图2所示。

(1)影像分割。分割是面向对象分类的前提。 目前eCognition软件多尺度分割算法应用较成熟¹¹⁷, 因此本研究采用多尺度分割进行影像分割。该分 割效果主要由影像图层权重、形状因子和紧致度因 子、分割尺度决定¹¹⁸。

考虑到研究区地物类型及特征,本研究设置 各波段权重均为1。通过控制变量法确定最佳形 状因子和紧致度因子,分别为0.1、0.3。利用ESP (Estimation of Scale Parameter)插件实现最优分割 尺度初步筛选^[19],把分割尺度缩小在0~200范围内; 再以步长10为间隔,采用20个不同尺度(10、 20、…,200)进行分割。最后,通过比较分割对象的 亮度均值标准差与亮度标准差均值,发现分割尺度 为40时影像城市地物分割效果最好。

(2)最优特征集筛选。如何选择适合的特征是 实现图像分类的关键步骤。通过研究发现可以借 助一些算法进行特征选择,但它们通常无法处理大量特征且实现复杂,对编程能力要求高^[20]。因此本 文利用K近邻分类器原理找到类别之间区分的最 大平均最小距离的特征组合作为分类最优特征集。

最优特征集筛选流程:① 在分割后影像进行样本选择,为保证精度每类样本数量在50个以上;② 通过 Feature Space Optimization 工具进行初始特征集选择,本文初始特征集选择常用43个特征;③ 分析筛选结果,选择15 维度时的特征集作为最优特征集,如表2所示。

表2 面向对象分类最优特征集

Tab. 2 Optimal feature set for object-based classifications

特征类型	特征名称	物理意义
光谱特征	Mean R	R波段均值
	Ratio R	R波段比率
	quantile[50] (R)	R波段分位数
	Max.diff.	最大差值
	Standard deviation NIR	NIR波段标准偏差
	HIS Transformation Saturation	HIS空间饱和度
形状特征	Area	面积
	Shape index	形状指数
	Density Filiptic Fit	密度
	Compactness(polygon)	椭圆拟合率
		紧致度
纹理特征	GLCM Entropy(all.dir.)	灰度共生矩阵熵
	GLCM Homogeneity(all.dir.)	灰度共生矩阵均质性
自定义特征	NDWI	归一化水体指数
	NDVI	归一化植被指数

注:表中光谱特征、形状特征、纹理特征包含所有特征均参考 eCognition软件Reference Book,自定义特征NDWI为归一化水体指 数,详见文献[21];NDVI为归一化植被指数,详见文献[22]。

3.4 样本制作

本文所涉及的样本包括训练样本、验证样本。训练样本容量每类应至少包含10~30n个,n为影像波段数,以保证某些分类算法中需要的方差-协方差矩阵计算^[23]。本实验中高分一号融合影像共计4个波段,故n=4,即每类应至少包括40个训练样本。验证样本参考最小样本数规则,即每类至少50个^[24-25]。另外,为减小样本受地物规则分布的影响,两样本分布均采用随机分布;为了使精度验证更科学,参考高分辨率近时相Google地图。结合实地踏勘数据,基于目视解译在ArcGIS中生成随机点完成研究区训练样本、验证样本制作,如图3所示。

图3 训练样本、验证样本、实地踏勘点分布

3.5 机器学习分类器

(1) CART 分类器。CART (Classification and Regression Tree),即分类回归树算法,它是Breiman 于 1984 年提出的一种数据分析的非参数统计算 法^[26],已经在遥感分类中得到了广泛应用^[27-29]。CART 算法通过使用预先设置的标准对数据进行递归分 割,直至完成所有的非叶子节点与叶子节点划分。

(2) SVM 分类器。SVM (Support Vector Machine),即支持向量机算法,于1995年Cortes 和 Vapnik 提出的统计学习理论分类算法^[30]。SVM 是由一个 分离超平面定义的判别分类器。即给定有标记的 训练数据,SVM 寻找一个超平面对目标样本进行分 割,将新样本分配给其中一个类别或另一个类别。 目前 SVM 算法广泛已应用于遥感影像分类^[31-34]。

(3) RF 分类器。RF (Random Forests)即随机 森林算法,是利用多棵随机、独立的决策树对样本 进行训练、预测的一种集成分类器,该分类器由 Breiman 和 Cutler 提出^[35]。RF 以其运行效率高、无 需考虑多元共线性的优点在遥感影像分类中得到 广泛应用^[36-37]。

3.6 精度评价方法

本文分类精度评价基于混淆矩阵完成^[38]。利 用混淆矩阵计算4种分类精度评价指标:生产者精 度(Producer's Accuracy, PA)、用户精度(User's Accuracy, UA)、总体精度(Overall Accuracy, OA)和 Kappa系数。其中,生产者精度和用户精度用于单 类别分类评价,总体精度和Kappa系数用于整体分 类评价。

(1)生产者精度。生产者精度是指某类别中被 正确分类的像元数占参考数据中此类别的像元总 数的比例,其计算公式如式(1)所示。

$$PA = \frac{x_{ii}}{\sum_{i=1}^{r} x_{ij}} \tag{1}$$

式中:PA为生产者精度; x_{ii} 为被正确分类的像元数; $\sum_{ij}^{r} x_{ij}$ 为参考数据此类别的像元总数。

(2)用户精度。用户精度是指某类别中被正确 分类的像元数占分类结果图中此类别的像元总数 的比例,其计算公式如式(2)所示。

$$UA = \frac{x_{ii}}{\sum_{i=1}^{r} x_{ji}}$$
(2)

式中:UA为生产者精度; x_{ii} 为被正确分类的像元数; $\sum_{i=1}^{r} x_{ji}$ 为分类结果此类别的像元总数。

(3)总体精度。总体精度是指被正确分类的各 类别像元总数占样本总数的比例,其计算如式(3) 所示。

$$OA = \frac{\sum_{i=1}^{N} x_{ii}}{N}$$
(3)

式中:OA为生产者精度; $\sum_{i=1}^{r} x_{ii}$ 为被正确分类的总像元数; N为样本总数。

(4)Kappa系数。Kappa系数是分类图与参考数据吻合程度的综合反映,范围在0-1之间。Kappa 系数通过主对角线、行列总数得出的概率一致性表达的。Kappa系数计算公式如式(4)所示。

$$Kappa = \frac{N\sum_{i=1}^{r} x_{ii} - \sum_{i=1}^{r} (x_{i+}x_{+i})}{N^2 - \sum_{i=1}^{r} (x_{i+}x_{+i})}$$
(4)

式中:r是矩阵行数,即总分类类别数;x_{ii}是误差矩阵 中第*i*行、第*i*列上样本数量(即正确分类的数目);x_i+ 和x_{+i}分别是第*i*行和第*i*列的和;N是所有样本总数。

4 结果与分析

4.1 城市用地分类结果

利用第3节所述方法,结合分类体系、训练样本,基于eCognition、ArcGIS软件对周口城区高分一

号融合多光谱影像进行面向像元、面向对象2种分 类方式、3种机器学习算法的遥感影像分类并完成 制图,6种分类效果如图4所示。

4.2 精度评价与分析

对"四同"条件下面向像元、面向对象分类进行 主、客观精度评价。由图4发现,3种面向像元分类 器算法可以较好地实现城区地物分类,但"椒盐"现 象、错分现象严重,对分类后处理提出很大要求;而 3种面向对象分类目视效果有很大提高、类别更整 齐、碎斑现象更少,分类效果更好。

由表3可知,3种面向像元分类中RF分类效果 最好,Kappa系数为0.72,总体分类精度为78.02%; SVM分类次之,Kappa系数为0.71,总体分类精度 为77.75%;CART分类效果最差,Kappa系数为 0.64,总体分类精度为71.43%。而3种面向对象分 类算法的Kappa系数、总体精度均高于面向像元分 类,其中RF分类效果最好,Kappa系数为0.92,总体 分类精度为93.40%,SVM分类次之,Kappa系数为 0.91,总体分类精度为92.58%,CART分类效果最 差,Kappa系数为0.88,总体分类精度为90.66%。 这表明在分割尺度为40时、15个特征下面向对象 分类方法是非常可取的,满足周口城区城市遥感信 息提取。

综合比较2种分类方式下3种机器学习分类的 Kappa系数与总体分类精度,对本次研究3种机器 学习分类器分类性能进行评价,结果发现分类性能 最好的是RF、SVM次之,CART性能最差。

结合表3、图5、图6可知,面向像元、面向对象 2种分类方式中水体湿地的生产者精度和用户精度 总体最高,林草地、农业用地次之,交通用地、建筑 用地生产者精度和用户精度最低。但面向对象分 类较面向像元分类整体效果明显提升,以RF分类 为例,建筑用地生产者精度由56.18%提高至 92.13%,用户精度由69.44%提高至87.23%;交通用 地生产者精度由72.15%提高至89.87%,用户精度 由72.15%提高至92.20%。面向像元分类中交通用 地、建筑用地错分、漏分现象严重,如图7所示。这 是由于二者密集交错分布,纹理和光谱具有相似 性,面向像元分类仅通过像元光谱特征无法准确区

图4 基于GF-1号卫星影像周口城区面向像元与面向对象的3种分类器(CART、SVM、RF)分类方法下的结果比较 Fig. 4 Comparison of pixel-based and object-based classification under three machine learning classifiers including CART, SVM and RF using GF-1 remote sensing image for classing the main district of Zhoukou urban

		inc	cluding CAR	tT, SVM and	RF using GF	-1 rem	ote sensin	ig image for c	lassing the	main distri	ct of Zhouk	ou urban)		
		面向	像元CART分	类混淆矩阵						面向	对象 CART 分	类混淆矩阵			
	农业用地	林草地	水体湿地	建筑用地	交通用地	总计	UA/%		农业用地	林草地	水体湿地	建筑用地	交通用地	总计	UA/%
农业用地	64	6	0	6	4	83	77.10	农业用地	71	n	0	0	-	75	94.67
林草地	4	59	0	5	3	71	83.10	林草地	2	61	0	1	0	64	95.31
水体湿地	0	0	47	8	0	55	85.45	水体湿地	1	0	50	0	0	51	98.04
建筑用地	12	0	4	51	33	100	51.00	建筑用地	2	1	1	80	10	94	85.10
交通用地	0	0	0	16	39	55	70.90	交通用地	4	0	0	8	68	80	85.00
总计	80	65	51	89	6L			总计	80	65	51	89	79		
PA/%	80.00	90.77	92.16	57.30	49.37			PA/%	88.75	93.85	98.04	89.89	86.08		
OA=71.43%	Kappa=	=0.64						<i>OA</i> =90.66%	Kappa=	=0.88					
		回回	可像元SVM分	类混淆矩阵						面向	对象SVM分	类混淆矩阵			
	农业用地	林草地	水体湿地	建筑用地	交通用地	总计	UA/%		农业用地	林草地	水体湿地	建筑用地	交通用地	总计	UA/%
农业用地	71	2	0	4	3	80	88.75	农业用地	72	-	0	-	3	77	93.50
林草地	3	63	0	3	0	69	91.30	林草地	1	64	0	3	1	69	92.75
水体湿地	0	0	48	0	0	48	100.00	水体湿地	0	0	51	1	0	52	98.08
建筑用地	5	0	3	60	35	103	58.25	建筑用地	5	0	0	62	4	88	89.77
交通用地	1	0	0	22	41	64	64.06	交通用地	2	0	0	5	71	78	91.03
总计	80	65	51	89	<i>6L</i>			总计	80	65	51	89	79		
PA/%	88.75	96.92	94.11	67.42	51.90			PA/%	90.00	98.46	100.00	88.76	89.87		
OA=77.75%	Kappa=	=0.71						OA=92.58%	Kappa=	0.91					
		画	向像元RF分	线混淆矩阵						画	向对象RF 分类	き混淆矩阵			
	农业用地	林草地	水体湿地	建筑用地	交通用地	总计	UA/%		农业用地	林草地	水体湿地	建筑用地	交通用地	总计	UA/%
农业用地	99	3	0	6	5	83	79.52	农业用地	72	1	0	0	1	74	97.30
林草地	7	62	0	9	3	78	79.49	林草地	1	64	0	3	0	68	94.12
水体湿地	0	0	49	3	0	52	94.23	水体湿地	0	0	51	0	0	51	100.00
建筑用地	9	0	2	50	14	72	69.44	建筑用地	5	0	0	82	7	94	87.23
交通用地	1	0	0	21	57	62	72.15	交通用地	2	0	0	4	71	LL	92.20
总计	80	65	51	89	79			总计	80	65	51	89	79		
PA/%	82.50	95.38	96.08	56.18	72.15			PA/%	90.00	98.46	100.00	92.13	89.87		
OA=78.02%	Kappa=	=0.72						OA=93.40%	Kappa=	=0.92					

2020年

10期

Fig. 6 Comparison of producer's accuracy and user's accuracy of object-based classification(under three machine learning classifiers including CART, SVM and RF) for Zhoukou urban at class level

图 7 周口城区面向像元、面向对象下的 3 种分类器(CART、SVM、RF)分类结果局部细节图对比 Fig. 7 Comparison of local details of pixel-based and object-based classification for Zhoukou urban under three machine learning classifiers including CART, SVM and RF

分二者,而面向对象处理单元为"纯净"影像对象, 根据对象的光谱、纹理、空间关系等多特征进行分 类,具有更强的地物识别能力,因此分类精度更高。

5 结论与展望

本文在同软件平台、同分类器、同训练样本、同 验证样本即"四同"条件下,对高分一号周口城区融 合影像进行面向像元、面向对象的分类对比研究, 并进行了主观、客观评价精度评价。结果表明:

(1)本文突破常规面向像元、面向对象分类对 比研究,实现"四同"条件下高分一号周口城区影像 面向像元、面向对象2种分类方法,CART、SVM、 RF3种机器学习算法的分类验证,并基于混淆矩阵 完成精度评价。

(2)"四同"条件下面向像元、面向对象2种遥感 影像分类方式均可实现周口城区高分一号影像城 市用地信息提取,但面向对象的方法总体效果较 好,与前人研究结论一致。在面向像元分类中,RF 分类效果最好,Kappa达到0.72,SVM、CART依次 降低,面向像元分类"椒盐"现象严重;而面向对象 分类中RF分类效果最好,Kappa达到0.92,SVM、 CART依次降低,面向对象分类有效克服"同物异 谱、同谱异物"现象具有更好的目视效果。

(3)单类别建筑用地、交通用地的用户精度和 生产者精度总体较低,但面向对象分类较面向像元 分类效果明显提升,以RF分类为例,建筑用地生产 者精度由56.18%提高至92.13%,用户精度由69.44% 提高至87.23%;交通用地生产者精度由72.15%提 高至89.87%,用户精度由72.15%提高至92.20%。

尽管本文得出以上结论,但仍不能片面、绝对 地认为任何条件下面向对象分类效果一定好于面 向像元,因为二者作为不同的解译思想有其各自普 适性和局限性,选择何种分类方式须视情况而定。 本实验仅对高分一号2m融合影像进行分类,未对 其他高、中、低分辨遥感影像进行研究,未来尝试不 同传感器类型、不同分辨率的卫星遥感2种分类研 究。另外,本文在面向对象分割中仅使用单一分割 尺度作为最终分割尺度,未来研究中根据不同地物 类型、分布探究多层次多尺度分割,从而提高影像 分割精度;在基于机器学习分类器分类时,未考虑 模型参数变化影响,在下一步研究中调节模型参数 以提高分类精度。

参考文献(References):

- [1] 陈平生. K-means 和 ISODATA 聚类算法的比较研究[J]. 江西理工大学学报,2012,33(1):78-80. [Chen P S. A comparative study on clustering algorithms: K-means and ISODATA[J]. Journal of Jiangxi University of Science and Technology, 2012,33(1):78-80.]
- [2] 彭光雄,宫阿都,崔伟宏,等.多时相影像的典型区农作物 识别分类方法对比研究[J].地球信息科学学报,2009,11
 (2):225-230. [Peng G X, Gong A D, Cui W H, et al. Study on methods comparison of typical remote sensing classification based on multi-temporal images[J]. Journal of Geoinformation Science, 2009,11(2):225-230.]
- [3] Ran G, Michelle F S, Beth T, et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover[J]. Remote Sensing of Environment, 2018,205(2):253-275.
- [4] Shaharum N S, Mohd S H, Wan W A, et al. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms[J]. Remote Sensing Applications: Society and Environment, 2020,17:100287.
- [5] Blaschke T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):2-16.
- [6] Fathizad H, Hakimzadeh A M, Mehrjardi R T, et al. Evaluating desertification using remote sensing technique and object-oriented classification algorithm in the Iranian central desert[J]. Journal of African Earth Sciences, 2018, 145:115-130.
- [7] 耿仁方,付波霖,蔡江涛,等.基于无人机影像和面向对象 随机森林算法的岩溶湿地植被识别方法研究[J].地球信 息科学学报,2019,21(8):1295-1306. [Geng R F, Fu B L, Cai J T, et al. Object-based karst wetland vegetation classification method using unmanned aerial vehicle images and random forest algorithm[J]. Journal of Geo-information Science, 2019,21(8):1295-1306.]
- [8] Hadi M, Siva K B, Raj K, et al. Comparison between pixel- and object-based image classification of a tropical landscape using Système Pour l'Observation de la Terre-5 imagery[J]. Journal of Applied Remote Sensing, 2013,7:073512.
- [9] Piazza G A, Vibrans A C, Liesenberg V, et al. Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high-spatial resolution images[J]. GIScience Remote Sensing, 2016,53(2):206-226.
- [10] Tedros M B, Charles R L, Qiusheng W, et al. Comparing pixel-and object-based approaches in effectively classifying Wetland-Dominated landscapes[J]. Remote Sensing, 2018,10(46):1-2.
- [11] Hayder D, Mohammed O I, Goma B A, et al. Hierarchical classification approach for mapping rubber tree growth using per-pixel and object-oriented classifiers with SPOT-5 imagery[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2017,20(1):21-30.

- [12] Sibaruddin H I, Shafri H Z, Pradhan B, et al. Comparison of pixel-based and object-based image classification techniques in extracting information from UAV imagery data [J]. IOP Conference Series: Earth and Environmental Science, 2018,169:012098.
- [13] Wang D, Wan B, Qiu P, Qiu P, et al. Artificial mangrove species mapping using Pléiades-1: An evaluation of pixel-based and object-based classifications with selected machine learning algorithms[J]. Remote Sensing, 2018,10(2):294-316.
- [14] 梁艳.面向对象与基于像素的高分辨率遥感影像分类在土 地利用分类中的应用比较[D].太原:太原理工大学,2012.
 [Liang Y. Object-oriented vs. pixel-based method for landuse classification using high-resolution remote sensing images[D]. Taiyuan: Taiyuan University of Technology, 2012.]
- [15] 刘纪远,张增祥,庄大方,等.中国土地利用变化的遥感时 空信息研究[M].北京:科学出版社,2005. [Liu J Y, Zhang Z X, Zhuang D F, et al. Research on remote sensing spatio- temporal information of land use change in China[M]. Beijing: Science Press, 2005.]
- [16] Markus G, Jing X. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87:78-92.
- [17] 袁泽.基于GF-2遥感影像的城镇地物信息提取分割尺度 研究[D].乌鲁木齐:新疆大学,2016. [Yuan Z. Research on segmentation scale of information extraction with towns based on GF-2 image[D]. Urumqi: Xinjiang University, 2016.]
- [18] 杜斌.基于面向对象的高分辨率遥感影像水体信息提取 优势研究[D].昆明:云南师范大学,2014. [Du B. Research on the superiority of water information extraction based on object-oriented high resolution remote sensing image[D]. Kunming: Yunnan Normal University, 2014.]
- [19] Drăguţ L, Tiede D, Shaun R, et al. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010,24(6):859-871.
- [20] 杨宁.高分辨率影像面向对象分类特征选择方法研究 [D].西安:西安科技大学,2012. [Yang N. Feature selection for object-oriented classification of high resolution remote sensing images[D]. Xi'an: Xi'an University of Science and Technology, 2012.]
- [21] Gao B. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996,58(3):257-266.
- [22] Bhandari A K, Kumar A, Singh G K. Feature extraction using Normalized Nifference Negetation Index (NDVI): A case study of Jabalpur City[J]. Procedia Technology, 2012,6:612-621.
- [23] Van Niel T G, McVicar T R, Datt B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification [J]. Remote Sensing of Environment, 2005,98(4):468-480.
- [24] John R, Jensen. Introductory digital image processing: A

remote sensing perspective, 4th edition[M]. Glenview: Pearson Education, 2016.

- [25] Congalton R G, Kass G. Assessing the accuracy of remotely sensed data: principles and practices, 3th edition[M]. CRC Press, 2019.
- [26] Breiman L, Friedman J H, Olshen R A, et al. Classification and regression trees[M]. New York: Chapman and Hall, 1984.
- [27] Yang S, Ross S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,70 (1):78-87.
- [28] Zhang Z M, He G J, Wang M M, et al. Detecting decadal land cover changes in mining regions based on satellite remotely sensed imagery: A case study of the Stone Mining Area in Luoyuan County, SE China[J]. Photogrammetric Engineering & Remote Sensing, 2015,81(9):745-751.
- [29] Arjan J H, Crystal A, James A. Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States[J]. Remote Sensing of Environment, 2016,186:275-285.
- [30] Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3):273-297.
- [31] Giorgos M, Jungho I, Caesar O. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(3):247-259.
- [32] Michele D, Liviu T E, Mattia M, et al. Semi-supervised SVM for individual tree crown species classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,110:77-87.
- [33] Mustafa U, Fusun B S, Barnali D. Application of support vector machines for landuse classification using high-resolution RapidEye images: A sensitivity analysis[J]. European Journal of Remote Sensing, 2015,48:403-422.
- [34] Asmala A, Ummi K M, Othman M, et al. Comparative analysis of support vector machine, maximum likelihood and neural network classification on multispectral remote sensing data[J]. International Journal of Advanced Computer Science and Applications, 2018,9(9):529-537.
- [35] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
- [36] Collins L, Griffioen P, Newell G, et al. The utility of random forests for wildfire severity mapping[J]. Remote Sensing of Environment, 2018,216:374-384.
- [37] Uyen N, Edward P G, Thanh D D, et al. Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona[J]. Ecological Informatics, 2019,50:43-50.
- [38] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002,80 (1):185-201.